The contributions of protein kinase A and smoothened phosphorylation to hedgehog signal transduction in Drosophila melanogaster.
نویسندگان
چکیده
Protein kinase A (PKA) silences the Hedgehog (Hh) pathway in Drosophila in the absence of ligand by phosphorylating the pathway's transcriptional effector, Cubitus interruptus (Ci). Smoothened (Smo) is essential for Hh signal transduction but loses activity if three specific PKA sites or adjacent PKA-primed casein kinase 1 (CK1) sites are replaced by alanine residues. Conversely, Smo becomes constitutively active if acidic residues replace those phosphorylation sites. These observations suggest an essential positive role for PKA in responding to Hh. However, direct manipulation of PKA activity has not provided strong evidence for positive effects of PKA, with the notable exception of a robust induction of Hh target genes by PKA hyperactivity in embryos. Here we show that the latter response is mediated principally by regulatory elements other than Ci binding sites and not by altered Smo phosphorylation. Also, the failure of PKA hyperactivity to induce Hh target genes strongly through Smo phosphorylation cannot be attributed to the coincident phosphorylation of PKA sites on Ci. Finally, we show that Smo containing acidic residues at PKA and CK1 sites can be stimulated further by Hh and acts through Hh pathways that both stabilize Ci-155 and use Fused kinase activity to increase the specific activity of Ci-155.
منابع مشابه
Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase.
Smoothened, a heptahelical membrane protein, functions as the transducer of Hedgehog signaling. The kinases that modulate Smoothened have been thoroughly analyzed in flies. However, little is known about how phosphorylation affects Smoothened in vertebrates, mainly, because the residues, where Smoothened is phosphorylated are not conserved from Drosophila to vertebrates. Given its molecular arc...
متن کاملPhosphorylation of the fused protein kinase in response to signaling from hedgehog.
The hedgehog gene (hh) of Drosophila melanogaster exerts both short- and long-range effects on cell patterning during development. The product of hedgehog is a secreted protein that apparently acts by triggering an intra-cellular signaling pathway, but little is known about the details of that pathway. The Drosophila gene fused (fu) encodes a serine/threonine-protein kinase that genetic experim...
متن کاملA genetic screen in Drosophila for identifying novel components of the hedgehog signaling pathway.
The Hedgehog signaling pathway plays an essential role in the pattern formation and development of metazoan animals. Misregulation of Hedgehog signaling has also been associated with the formation of multiple types of cancer. For these reasons, the Hedgehog pathway has attracted considerable interest. Many proteins required in the Hedgehog pathway have been identified, and while much has been l...
متن کاملThe unfolded protein response selectively targets active smoothened mutants.
The Hedgehog signaling pathway, an essential regulator of developmental patterning, has been implicated in playing causative and survival roles in a range of human cancers. The signal-transducing component of the pathway, Smoothened, has revealed itself to be an efficacious therapeutic target in combating oncogenic signaling. However, therapeutic challenges remain in cases where tumors acquire ...
متن کاملEvidence for a Novel Feedback Loop in the Hedgehog Pathway Involving Smoothened and Fused
Hedgehog (HH) is a major secreted morphogen involved in development, stem cell maintenance and oncogenesis [1, 2]. In Drosophila wing imaginal discs, HH produced in the posterior compartment diffuses into the anterior compartment to control target gene transcription via the transcription factor Cubitus interruptus (CI). The first steps in the reception and transduction of the HH signal are medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 173 4 شماره
صفحات -
تاریخ انتشار 2006